# Code Interpreter Benchmark ## Introduction To assess LLM's ability to use the Python Code Interpreter for tasks such as mathematical problem solving, data visualization, and other general-purpose tasks such as file handling and web scraping, we have created and open-sourced a benchmark specifically designed for evaluating these capabilities. ### Metrics The metrics are divided into two parts: code executability and code correctness. - Code executability: evaluating the ability of the LLM-generated code to be executed. - Code correctness: evaluating whether the LLM-generated code runs correctly. ### Domain When evaluating the code executability, we further divide it into three specific domains: `Math`, `Visualization`, `General problem-solving`. In terms of code correctness, we calculate accuracy rates for `Math` and `Visualization`. ## Results
Executable Rate of Generated Code (%)
ModelMath↑Visualization↑General↑
GPT-491.985.982.8
GPT-3.589.265.074.1
LLaMA2-7B-Chat 41.9 33.1 24.1
LLaMA2-13B-Chat 50.0 40.5 48.3
CodeLLaMA-7B-Instruct 85.1 54.0 70.7
CodeLLaMA-13B-Instruct 93.2 55.8 74.1
InternLM-7B-Chat-v1.1 78.4 44.2 62.1
InternLM-20B-Chat 70.3 44.2 65.5
Qwen-7B-Chat 82.4 64.4 67.2
Qwen-14B-Chat 89.2 84.1 65.5
Accuracy of Code Execution Results (%)
ModelMath↑Visualization-Hard↑Visualization-Easy↑
GPT-482.866.760.8
GPT-3.547.333.355.7
LLaMA2-7B-Chat 3.9 14.3 39.2
LLaMA2-13B-Chat 8.3 8.3 40.5
CodeLLaMA-7B-Instruct 14.3 26.2 60.8
CodeLLaMA-13B-Instruct 28.2 27.4 62.0
InternLM-7B-Chat-v1.1 28.5 4.8 40.5
InternLM-20B-Chat 34.6 21.4 45.6
Qwen-7B-Chat 41.9 40.5 54.4
Qwen-14B-Chat 58.4 53.6 59.5
## Usage ### Installation ```shell git clone https://github.com/QwenLM/Qwen-Agent.git cd benchmark pip install -r requirements.txt ``` ### Dataset Download ```shell cd benchmark wget https://qianwen-res.oss-cn-beijing.aliyuncs.com/assets/qwen_agent/benchmark_code_interpreter_data.zip unzip benchmark_code_interpreter_data.zip mkdir eval_data mv eval_code_interpreter_v1.jsonl eval_data/ ``` ### Evaluation To reproduce the comprehensive results of benchmark, you can run the following script: ```Shell python inference_and_execute.py --model {model_name} ``` {model_name}: - qwen-1.8b-chat - qwen-7b-chat - qwen-14b-chat - llama-2-7b-chat - llama-2-13b-chat - codellama-7b-instruct - codellama-13b-instruct - internlm-7b-chat-1.1 - internlm-20b-chat The benchmark will run the test cases and generate the performance results. The results will be saved in the `output_data` directory. **Notes**: Please install `simhei.ttf` font for proper display in matplotlib when evaluating visualization task. You can do this by preparing `simhei.ttf` (which can be found on any Windows PC) and then running the following code snippet: ```python import os import matplotlib target_font_path = os.path.join( os.path.abspath( os.path.join(matplotlib.matplotlib_fname(), os.path.pardir)), 'fonts', 'ttf', 'simhei.ttf') os.system(f'cp simhei.ttf {target_font_path}') font_list_cache = os.path.join(matplotlib.get_cachedir(), 'fontlist-*.json') os.system(f'rm -f {font_list_cache}') ``` #### Code Executable Rate ```Shell python inference_and_execute.py --task {task_name} --model {model_name} ``` {task_name}: - `all_ci`: All tasks including Math / Visualization / General problem-solving - `visualization`: Visualization task - `math`: Math task - `general`: General problem-solving task #### Code Correctness Rate ```Shell python inference_and_execute.py --task {task_name} --model {model_name} ``` {task_name}: - `visualization`: Visualization task - `gsm8k`: Math task ## Configuration The inference_and_exec.py file contains the following configurable options: - `--model`: The model to test which can be one of `qwen-14b-chat`, `qwen-7b-chat`, `qwen-1.8b-chat`, `qwen-7b-chat`, `llama-2-7b-chat`, `llama-2-13b-chat`, `codellama-7b-instruct`, `codellama-13b-instruct`, `internlm-7b-chat-1.1`, `internlm-20b-chat`. - `--task`: The test task which can be one of `all`, `all_ci`, `visualization`, `math`, `general`, `gsm8k`. - `--output-path`: The path for saving evaluation result. - `--input-path`: The path for placing evaluation data. - `--output-fname`: The file name for evaluation result. - `--input-fname`: The file name for evaluation data. - `--force`: Force generation and will overwrite the cached results. - `--eval-only`: Only calculate evaluation metrics without re-inference. - `--eval-code-exec-only`: Only evaluate code executable rate - `--gen-exec-only`: Only generate and execuate code without calculating evaluation metrics. - `--gen-only`: Only generate without execuating code and calculating evaluation metrics.