from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.vectorstores.faiss import FAISS from langchain.schema import Document import sentence_transformers import json import os from qwen_agent.utils.util import get_data_from_jsons os.environ["TOKENIZERS_PARALLELISM"] = "false" embedding_model_dict = { # "text2vec": "/data/m3e-base", "text2vec": "E:\项目临时\AI大模型\m3e-base", # "text2vec": r"E:\项目临时\AI大模型\bge_large_zh_v1.5",#使用bge-large-zh-v3模型也可以进行相似度搜索 } EMBEDDING_MODEL = "text2vec" # embedding 模型,对应 embedding_model_dict DEVICE = "cpu" embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[EMBEDDING_MODEL]) embeddings.client = sentence_transformers.SentenceTransformer(embeddings.model_name, device=DEVICE) # embeddings = DashScopeEmbeddings(model="text-embedding-v1", # dashscope_api_key="sk-cb5c097eb78f4dae8daa6a833590d757") class SqlRetriever(): def __init__(self, query_type='bidding') -> None: few_shot_docs = [] self.data = get_data_from_jsons(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'data'), 'sql_examples') for line in self.data: if line['query_type'] == query_type: few_shot_docs.append(Document(page_content=line['query'], metadata={'sql_code': line['sql_code']})) # page_content='帮我在萧山区推荐几块50亩左右的工业用地,数据表是控制性详细规划' metadata={'sql_code': "select id from sde.kzxxxgh where xzqmc = '萧山区' and ydxz like '%工业%' and abs(ydmj - 50*0.0667) <= 1 and shape is not null order by ydmj nulls last limit 5"} # page_content是query,metadata是sql self.vector_db = FAISS.from_documents(few_shot_docs, embeddings) # 以前没有用向量数据库进行相似度搜索,用的是find_most_similar_queries进行字符串匹配实现的这些功能 # 现在这2个方法已经被废弃调了,使用get_relevant_documents方法进行替代 def longest_common_substring(self, str1, str2): m, n = len(str1), len(str2) dp = [[0] * (n + 1) for _ in range(m + 1)] max_length = 0 for i in range(1, m + 1): for j in range(1, n + 1): if str1[i - 1] == str2[j - 1]: dp[i][j] = dp[i - 1][j - 1] + 1 max_length = max(max_length, dp[i][j]) return max_length def find_most_similar_queries(self, data, text, top_n=3): similarity_scores = [(item, self.longest_common_substring(item['query'], text)) for item in data] similarity_scores.sort(key=lambda x: x[1], reverse=True) return [item[0] for item in similarity_scores[:top_n]] def get_relevant_documents(self, query, top_k=4): results = [] for r in self.vector_db.similarity_search(query, k=top_k): results.append((r.page_content, r.metadata['sql_code'])) return results if __name__ == "__main__": # def longest_common_substring(str1, str2): # m, n = len(str1), len(str2) # dp = [[0] * (n + 1) for _ in range(m + 1)] # max_length = 0 # for i in range(1, m + 1): # for j in range(1, n + 1): # if str1[i - 1] == str2[j - 1]: # dp[i][j] = dp[i - 1][j - 1] + 1 # max_length = max(max_length, dp[i][j]) # return max_length # # # def find_most_similar_queries(data, text, top_n=3): # similarity_scores = [(item, longest_common_substring(item['query'], text)) for item in data] # similarity_scores.sort(key=lambda x: x[1], reverse=True) # return [item[0] for item in similarity_scores[:top_n]] # # # # data = [{"query":"example1", "sql_code": "sql1"},{"query":"example2", "sql_code": "sql2"}] # # text = "Some input text" # # print(find_most_similar_queries(data, text)) # # records = [] # data = json.load(open(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'data/sql_examples.jsonl'), 'r')) # for line in data: # records.append(line) # results = [] # for item in find_most_similar_queries(records, '浙江万维今年中了几个标?'): # results.append((item['query'], item['sql_code'])) # print(results) # print(find_most_similar_queries(records, '浙江万维今年中了几个标?')) sql_retrieval = SqlRetriever("land_site_selection") results = sql_retrieval.get_relevant_documents("萧山区推荐几块工业用地", top_k=2) for r in results: print(r) # ('帮我在萧山区推荐几块50亩左右的工业用地,数据表是公告地块', "select id from sde.ecgap_klyzy where xzqmc = '萧山区' and tdyt like '%工业%' and abs(dkmj-5) <= 1 and shape is not null and sfsj=1 order by dkmj nulls last limit 5") # ('帮我在萧山区推荐几块50亩左右的工业用地,数据表是控制性详细规划', "select id from sde.kzxxxgh where xzqmc = '萧山区' and ydxz like '%工业%' and abs(ydmj - 50*0.0667) <= 1 and shape is not null order by ydmj nulls last limit 5")