12345678910111213141516171819202122 |
- import torch
- from models.base import HFModel
- class Qwen(HFModel):
- def __init__(self, model_path):
- super().__init__(model_path)
- def generate(self, input_text, stop_words=[]):
- im_end = '<|im_end|>'
- if im_end not in stop_words:
- stop_words = stop_words + [im_end]
- stop_words_ids = [self.tokenizer.encode(w) for w in stop_words]
- input_ids = torch.tensor([self.tokenizer.encode(input_text)]).to(self.model.device)
- output = self.model.generate(input_ids, stop_words_ids=stop_words_ids)
- output = output.tolist()[0]
- output = self.tokenizer.decode(output, errors='ignore')
- assert output.startswith(input_text)
- output = output[len(input_text):].replace('<|endoftext|>', '').replace(im_end, '')
- return output
|