123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- from langchain.embeddings.huggingface import HuggingFaceEmbeddings
- from langchain.vectorstores.faiss import FAISS
- from langchain.schema import Document
- import sentence_transformers
- import json
- import os
- from qwen_agent.utils.util import get_data_from_jsons
- os.environ["TOKENIZERS_PARALLELISM"] = "false"
- embedding_model_dict = {
- # "text2vec": "/data/m3e-base",
- "text2vec": "E:\项目临时\AI大模型\m3e-base",
- # "text2vec": r"E:\项目临时\AI大模型\bge_large_zh_v1.5",#使用bge-large-zh-v3模型也可以进行相似度搜索
- }
- EMBEDDING_MODEL = "text2vec" # embedding 模型,对应 embedding_model_dict
- DEVICE = "cpu"
- embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[EMBEDDING_MODEL])
- embeddings.client = sentence_transformers.SentenceTransformer(embeddings.model_name, device=DEVICE)
- # embeddings = DashScopeEmbeddings(model="text-embedding-v1",
- # dashscope_api_key="sk-cb5c097eb78f4dae8daa6a833590d757")
- class SqlRetriever():
- def __init__(self, query_type='bidding') -> None:
- few_shot_docs = []
- self.data = get_data_from_jsons(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'data'),
- 'sql_examples')
- for line in self.data:
- if line['query_type'] == query_type:
- few_shot_docs.append(Document(page_content=line['query'], metadata={'sql_code': line['sql_code']}))
- # page_content='帮我在萧山区推荐几块50亩左右的工业用地,数据表是控制性详细规划' metadata={'sql_code': "select id from sde.kzxxxgh where xzqmc = '萧山区' and ydxz like '%工业%' and abs(ydmj - 50*0.0667) <= 1 and shape is not null order by ydmj nulls last limit 5"}
- # page_content是query,metadata是sql
- self.vector_db = FAISS.from_documents(few_shot_docs, embeddings)
- # 以前没有用向量数据库进行相似度搜索,用的是find_most_similar_queries进行字符串匹配实现的这些功能
- # 现在这2个方法已经被废弃调了,使用get_relevant_documents方法进行替代
- def longest_common_substring(self, str1, str2):
- m, n = len(str1), len(str2)
- dp = [[0] * (n + 1) for _ in range(m + 1)]
- max_length = 0
- for i in range(1, m + 1):
- for j in range(1, n + 1):
- if str1[i - 1] == str2[j - 1]:
- dp[i][j] = dp[i - 1][j - 1] + 1
- max_length = max(max_length, dp[i][j])
- return max_length
- def find_most_similar_queries(self, data, text, top_n=3):
- similarity_scores = [(item, self.longest_common_substring(item['query'], text)) for item in data]
- similarity_scores.sort(key=lambda x: x[1], reverse=True)
- return [item[0] for item in similarity_scores[:top_n]]
- def get_relevant_documents(self, query, top_k=4):
- results = []
- for r in self.vector_db.similarity_search(query, k=top_k):
- results.append((r.page_content, r.metadata['sql_code']))
- return results
- if __name__ == "__main__":
- # def longest_common_substring(str1, str2):
- # m, n = len(str1), len(str2)
- # dp = [[0] * (n + 1) for _ in range(m + 1)]
- # max_length = 0
- # for i in range(1, m + 1):
- # for j in range(1, n + 1):
- # if str1[i - 1] == str2[j - 1]:
- # dp[i][j] = dp[i - 1][j - 1] + 1
- # max_length = max(max_length, dp[i][j])
- # return max_length
- #
- #
- # def find_most_similar_queries(data, text, top_n=3):
- # similarity_scores = [(item, longest_common_substring(item['query'], text)) for item in data]
- # similarity_scores.sort(key=lambda x: x[1], reverse=True)
- # return [item[0] for item in similarity_scores[:top_n]]
- #
- #
- # # data = [{"query":"example1", "sql_code": "sql1"},{"query":"example2", "sql_code": "sql2"}]
- # # text = "Some input text"
- # # print(find_most_similar_queries(data, text))
- #
- # records = []
- # data = json.load(open(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'data/sql_examples.jsonl'), 'r'))
- # for line in data:
- # records.append(line)
- # results = []
- # for item in find_most_similar_queries(records, '浙江万维今年中了几个标?'):
- # results.append((item['query'], item['sql_code']))
- # print(results)
- # print(find_most_similar_queries(records, '浙江万维今年中了几个标?'))
- sql_retrieval = SqlRetriever("land_site_selection")
- results = sql_retrieval.get_relevant_documents("萧山区推荐几块工业用地", top_k=2)
- for r in results:
- print(r)
- # ('帮我在萧山区推荐几块50亩左右的工业用地,数据表是公告地块', "select id from sde.ecgap_klyzy where xzqmc = '萧山区' and tdyt like '%工业%' and abs(dkmj-5) <= 1 and shape is not null and sfsj=1 order by dkmj nulls last limit 5")
- # ('帮我在萧山区推荐几块50亩左右的工业用地,数据表是控制性详细规划', "select id from sde.kzxxxgh where xzqmc = '萧山区' and ydxz like '%工业%' and abs(ydmj - 50*0.0667) <= 1 and shape is not null order by ydmj nulls last limit 5")
|