123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237 |
- import asyncio
- import json
- from httpx import RemoteProtocolError
- from qwen_agent.llm.llm_client import LLMAsyncClient
- from qwen_agent.messages.context_message import ChatResponseChoice, ChatResponseStreamChoice
- from qwen_agent.planning.planner import PlanResponseContextManager
- from qwen_agent.planning.plans.doc_write_plan import DocWritePlan
- from qwen_agent.planning.plans.land_approval_plan import LandApprovalPlan
- from qwen_agent.planning.plans.land_supply_plan import LandSupplyPlan
- from qwen_agent.planning.plans.land_site_selection_plan import LandSiteSelectionPlan
- from qwen_agent.planning.plans.land_use_plan import LandUsePlan
- from qwen_agent.planning.plans.kfq_eval_plan import KfqEvalPlan
- from qwen_agent.planning.plans.report_plan import ReportPlan
- from qwen_agent.planning.plans.gis_plan import GisPlan
- from qwen_agent.sub_agent import ChartAgent
- from qwen_agent.sub_agent.ChatAgent import ChatAgent
- from qwen_agent.sub_agent.KnowledgeChatAgent import KnowledgeChatAgent
- from qwen_agent.planning.plans.land_find_plan import LandFindPlan
- from qwen_agent.planning.plans.layer_operation_plan import LayerOperationPlan
- BIDDING_PLANS = {
- "Chat": "如果用户的问题和自然资源的分析无关,可以选择闲聊接口和用户闲聊",
- "Gis": "gis图形相关的分析和arcgis server图层查询和空间分析,擅长进行图形的相交等空间叠加分析计算。如: 上传的shp与工业用地图层空间分析的相交结果",
- "KnowledgeChat": "如果用户的问题和自然资源的知识有关,可以选择知识库问答接口",
- "LandSiteSelectionPlan": "智能选址分析,如:请帮我推荐杭州市50亩左右的工业用地?",
- "LandFindPlan": "找图找数,如:请帮我查一下萧山区永久基本农田面积大于100亩的地块?",
- "LayerOperationPlan": "图层控制系统,如打开永久基本农田图层",
- "LandSupplyPlan": "土地供应合同分析,用于Question中包含了[一个具体的]区域名称选择、土地供应情况。如:请分析近几年杭州市住宅用地出让情况?",
- "LandUsePlan": "土地利用现状,用于Question中包含了[一个具体的]区域名称选择、土地利用现状情况,包括土地的耕地面积、湿地面积等。如:2022年浙江省土地利用现状情况?",
- "LandApprovalPlan": "土地报批项目,用于Question中包含了[一个具体的]区域名称选择、土地报批项目情况。如:瑞安市2023年报批项目总面积?",
- "KfqEvalPlan": "园区及开发区评价,用于Question中包含了[一个具体的]开发区名称选择、园区评价情况。如:2020年绩效评价得分最好的园区是哪个?",
- "ReportPlan": "分析报告写作专家,用于Question中需要生成分析报告。如:2023年瑞安市自然资源形势分析报告?",
- "DocWritePlan": "公文写作生成,用于根据Question生成对应的文章,并可以对文章进行润色、扩写、续写,还能检查文章的内容是否有问题或者是否包含敏感词"
- }
- PLAN_DICT = {
- "Chat": ChatAgent,
- "KnowledgeChat": KnowledgeChatAgent,
- "GisPlan": GisPlan,
- "LandSiteSelectionPlan": LandSiteSelectionPlan,
- "LandFindPlan": LandFindPlan,
- "LayerOperationPlan": LayerOperationPlan,
- "LandSupplyPlan": LandSupplyPlan,
- "KfqEvalPlan": KfqEvalPlan,
- "LandApprovalPlan": LandApprovalPlan,
- "LandUsePlan": LandUsePlan,
- "ReportPlan": ReportPlan,
- "DocWritePlan": DocWritePlan
- }
- PROMPT_TEMPLATE = """
- 你是一个土地交易市场和房地产交易市场领域商业分析计划Plan的制定者,擅长制定招投标分析的计划,来完成用户商业分析的需求。
- 下面是用于满足用户不同需求的Agent,请从如下的Agent中选择一个,来执行用户Question:
- {plans_list}
- 请依据参考资料,制定计划完成用户需求,按照如下格式返回:
- Question: 用户针对招投标问题的提问
- Thought: 生成Plan的思考过程,请简要进行分析
- Plan Agent: 选择的Plan
- 下面是一些例子:
- Example #0:
- Question: 浙江省去年土地供应情况?
- Thought: 用户想要了解杭浙江省去年土地供应情况,调用 LandSupplyPlan 分析模块
- Plan Agent: land_supply
- Example #1:
- Question: 杭州市去年土地交易情况?
- Thought: 用户想要了解杭州市去年土地交易情况,Question中“杭州市”是个地市名称,调用 LandSupplyPlan 分析模块
- Plan Agent: LandSupplyPlan
- Example #2:
- Question: 你是谁?
- Thought: 用户该问题与招投标相关的分析无关,可以进入闲聊模式,使用Chat接口与用户闲聊;
- Plan Agent: Chat
- Example #3:
- Question: 什么是工业用地?
- Thought: 用户想要了解自然资源相关知识,Question中的意图是查询什么是工业用地,所以需要通过知识库进行回答,应该使用KnowledgeChat模块;
- Plan Agent: Competition
- Example #4:
- Question: 工业用地竞买流程?
- Thought: 用户想要了解土地拍卖流程相关知识,Question中的意图是查询工业用地的竞买流程,所以需要通过知识库进行回答,应该使用KnowledgeChat模块;
- Plan Agent: Competition
- Example #5:
- Question: 浙江省2022年土地利用现状总面积是多少?
- Thought: 用户想要了解杭浙江省2022年土地利用现状情况,调用 LandUsePlan 分析模块
- Plan Agent: land_use
- Example #6:
- Question: 请分析浙江省2022年各地级市耕地面积,并绘制柱状图
- Thought: 用户想要分析浙江省2022年各地级市耕地面积,并绘制柱状图,调用 LandUsePlan 分析模块
- Plan Agent: LandUsePlan
- Example #7:
- Question: 帮我分析下上传的shp和供地图层的相交结果
- Thought: 用户想要分析下上传的shp和供地图层的相交结果,调用 GisPlan 分析模块
- Plan Agent: GisPlan
- Example #8:
- Question: 2023年瑞安市自然资源形势分析报告
- Thought: 用户想要编写2023年瑞安市自然资源形势分析报告,调用 ReportPlan 分析模块
- Plan Agent: ReportPlan
- Example #9:
- Question: 公文生成,对文字进行润色、扩写、续写,检查文章的内容是否有错误、是否包含敏感词等
- Thought: 用户想要使用文章相关的功能,调用 DocWritePlan 分析模块
- Plan Agent: DocWritePlan
- Example #10:
- Question: 请帮我在西湖区找出面积最大的商服用地,数据表是公告地块
- Thought: 用户想要从公告地块表种进行选址分析,调用 LandSiteSelectionPlan 分析模块
- Plan Agent: LandSiteSelectionPlan
- Example #11:
- Question: 帮我在萧山区找出面积大于100亩的永久基本农田图斑
- Thought: 用户想要找出永久基本农田地块,调用 LandFindPlan 分析模块
- Plan Agent: LandFindPlan
- Example #12:
- Question: 帮我打开永久基本农田图层
- Thought: 用户想要打开永久基本农田图层,调用 LayerOperationPlan 分析模块
- Plan Agent: LayerOperationPlan
- 注意:
- 1.Plan Agent 返回的都是单一的,不要出现多个plan,不要出现多个plan, 比如以下情况:Plan Agent: LandUsePlan, ReportPlan
- """
- INSTRUCTION = """
- 现在用户的Question是: {user_request}
- 下面请你按照上面的格式,选择合理的分析规划师。
- """
- class PlanDispatcher:
- def __init__(self, llm_name, llm_dict, llm=None, stream=True, name='plan_dispatcher', max_retry_cnt=3):
- # self.actions_list_str = json.dumps(plan_list, ensure_ascii=False)
- self.llm: LLMAsyncClient = llm
- self.llm_name = llm_name
- self.stream = stream
- self.name = name
- self.max_retry_cnt = max_retry_cnt
- self.llm_dict = llm_dict
- async def run(self, plan_context: PlanResponseContextManager, messages=None):
- user_request = plan_context.user_request
- system_prompt = PROMPT_TEMPLATE.format(
- plans_list=json.dumps(BIDDING_PLANS, ensure_ascii=False)
- )
- instruction = INSTRUCTION.format(user_request=user_request)
- _messages = [{
- 'role': 'system',
- 'content': system_prompt
- }]
- if messages:
- _messages.extend(messages)
- _messages.append({
- "role": "user",
- "content": instruction
- })
- # for msg in _messages:
- for i, msg in enumerate(_messages):
- if not isinstance(msg, dict):
- msg = dict(msg)
- if msg['type'].value == 1:
- msg['role'] = 'user'
- msg['content'] = msg['data']
- else:
- msg['role'] = 'assistant'
- msg['content'] = dict(msg['data'])['exec_res'][0]
- msg['history'] = True
- del msg['data']
- del msg['type']
- _messages[i] = msg
- if 'history' in msg and msg['history']:
- print('is history messsage')
- else:
- yield ChatResponseChoice(role=msg['role'], content=msg['content'])
- retry_cnt = self.max_retry_cnt
- while True:
- try:
- rep = await self.llm.chat(model=self.llm_name, messages=_messages, stream=self.stream)
- # await asyncio.sleep(0.1)
- if self.stream:
- res = ''
- async for chunk in rep:
- if chunk:
- yield ChatResponseStreamChoice(role='assistant', delta=chunk)
- res += chunk
- yield ChatResponseStreamChoice(role='assistant', finish_reason='stop')
- else:
- yield ChatResponseChoice(role='assistant', content=rep)
- res = rep
- _messages.append({
- 'role': 'assistant',
- 'content': res
- })
- print('plan dispatcher:', res)
- planner_name = res.split('Plan Agent:')[-1].split('\n')[0].strip()
- if planner_name not in PLAN_DICT.keys():
- planner_name = 'Chat'
- llm_name = self.llm_dict.get(planner_name) or self.llm_dict.get("planner") or self.llm_name
- planner = PLAN_DICT[planner_name](llm_name=llm_name, llm=self.llm, stream=self.stream)
- break
- except Exception as e:
- import traceback
- traceback.print_exc()
- print(f'{type(e)}, {isinstance(e, RemoteProtocolError)}')
- if self.stream:
- yield ChatResponseStreamChoice(role='assistant', finish_reason='flush')
- if isinstance(e, RemoteProtocolError):
- await asyncio.sleep(2 ** self.max_retry_cnt + 2 ** (self.max_retry_cnt - retry_cnt + 1))
- else:
- user_msg = {
- 'role': 'user',
- 'content': f"生成信息有误,请按照上面的格式重新生成,Plan Agent必须是{list(PLAN_DICT.keys())}中的一个",
- }
- _messages.append(user_msg)
- yield ChatResponseChoice(**user_msg)
- retry_cnt -= 1
- if retry_cnt <= 0:
- raise Exception(f'plan dispatcher run failed: {_messages}')
- self.planner = planner
- self.exec_res = res
- if __name__ == '__main__':
- plan = PlanDispatcher()
- plan.run("浙江省招商局总局今年招标的产品主要有哪些")
|