tokenization_qwen.py 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217
  1. """Tokenization classes for QWen."""
  2. import base64
  3. import unicodedata
  4. from pathlib import Path
  5. from typing import Collection, Dict, List, Set, Union
  6. import tiktoken
  7. from qwen_agent.log import logger
  8. VOCAB_FILES_NAMES = {'vocab_file': 'qwen.tiktoken'}
  9. PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
  10. ENDOFTEXT = '<|endoftext|>'
  11. IMSTART = '<|im_start|>'
  12. IMEND = '<|im_end|>'
  13. # as the default behavior is changed to allow special tokens in
  14. # regular texts, the surface forms of special tokens need to be
  15. # as different as possible to minimize the impact
  16. EXTRAS = tuple((f'<|extra_{i}|>' for i in range(205)))
  17. # changed to use actual index to avoid misconfiguration with vocabulary expansion
  18. SPECIAL_START_ID = 151643
  19. SPECIAL_TOKENS = tuple(enumerate(
  20. ((
  21. ENDOFTEXT,
  22. IMSTART,
  23. IMEND,
  24. ) + EXTRAS),
  25. start=SPECIAL_START_ID,
  26. ))
  27. SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
  28. def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
  29. with open(tiktoken_bpe_file, 'rb') as f:
  30. contents = f.read()
  31. return {
  32. base64.b64decode(token): int(rank) for token, rank in (line.split() for line in contents.splitlines() if line)
  33. }
  34. class QWenTokenizer:
  35. """QWen tokenizer."""
  36. vocab_files_names = VOCAB_FILES_NAMES
  37. def __init__(
  38. self,
  39. vocab_file=None,
  40. errors='replace',
  41. extra_vocab_file=None,
  42. ):
  43. if not vocab_file:
  44. vocab_file = VOCAB_FILES_NAMES['vocab_file']
  45. self._decode_use_source_tokenizer = False
  46. # how to handle errors in decoding UTF-8 byte sequences
  47. # use ignore if you are in streaming inference
  48. self.errors = errors
  49. self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
  50. self.special_tokens = {token: index for index, token in SPECIAL_TOKENS}
  51. # try load extra vocab from file
  52. if extra_vocab_file is not None:
  53. used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
  54. extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
  55. for token, index in extra_mergeable_ranks.items():
  56. if token in self.mergeable_ranks:
  57. logger.info(f'extra token {token} exists, skipping')
  58. continue
  59. if index in used_ids:
  60. logger.info(f'the index {index} for extra token {token} exists, skipping')
  61. continue
  62. self.mergeable_ranks[token] = index
  63. # the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
  64. enc = tiktoken.Encoding(
  65. 'Qwen',
  66. pat_str=PAT_STR,
  67. mergeable_ranks=self.mergeable_ranks,
  68. special_tokens=self.special_tokens,
  69. )
  70. assert len(self.mergeable_ranks) + len(
  71. self.special_tokens
  72. ) == enc.n_vocab, f'{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding'
  73. self.decoder = {v: k for k, v in self.mergeable_ranks.items()} # type: dict[int, bytes|str]
  74. self.decoder.update({v: k for k, v in self.special_tokens.items()})
  75. self.tokenizer = enc # type: tiktoken.Encoding
  76. self.eod_id = self.tokenizer.eot_token
  77. self.im_start_id = self.special_tokens[IMSTART]
  78. self.im_end_id = self.special_tokens[IMEND]
  79. def __getstate__(self):
  80. # for pickle lovers
  81. state = self.__dict__.copy()
  82. del state['tokenizer']
  83. return state
  84. def __setstate__(self, state):
  85. # tokenizer is not python native; don't pass it; rebuild it
  86. self.__dict__.update(state)
  87. enc = tiktoken.Encoding(
  88. 'Qwen',
  89. pat_str=PAT_STR,
  90. mergeable_ranks=self.mergeable_ranks,
  91. special_tokens=self.special_tokens,
  92. )
  93. self.tokenizer = enc
  94. def __len__(self) -> int:
  95. return self.tokenizer.n_vocab
  96. def get_vocab(self) -> Dict[bytes, int]:
  97. return self.mergeable_ranks
  98. def convert_tokens_to_ids(self, tokens: Union[bytes, str, List[Union[bytes, str]]]) -> List[int]:
  99. ids = []
  100. if isinstance(tokens, (str, bytes)):
  101. if tokens in self.special_tokens:
  102. return self.special_tokens[tokens]
  103. else:
  104. return self.mergeable_ranks.get(tokens)
  105. for token in tokens:
  106. if token in self.special_tokens:
  107. ids.append(self.special_tokens[token])
  108. else:
  109. ids.append(self.mergeable_ranks.get(token))
  110. return ids
  111. def tokenize(
  112. self,
  113. text: str,
  114. allowed_special: Union[Set, str] = 'all',
  115. disallowed_special: Union[Collection, str] = (),
  116. ) -> List[Union[bytes, str]]:
  117. """
  118. Converts a string in a sequence of tokens.
  119. Args:
  120. text (`str`):
  121. The sequence to be encoded.
  122. allowed_special (`Literal["all"]` or `set`):
  123. The surface forms of the tokens to be encoded as special tokens in regular texts.
  124. Default to "all".
  125. disallowed_special (`Literal["all"]` or `Collection`):
  126. The surface forms of the tokens that should not be in regular texts and trigger errors.
  127. Default to an empty tuple.
  128. Returns:
  129. `List[bytes|str]`: The list of tokens.
  130. """
  131. tokens = []
  132. text = unicodedata.normalize('NFC', text)
  133. # this implementation takes a detour: text -> token id -> token surface forms
  134. for t in self.tokenizer.encode(text, allowed_special=allowed_special, disallowed_special=disallowed_special):
  135. tokens.append(self.decoder[t])
  136. return tokens
  137. def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
  138. """
  139. Converts a sequence of tokens in a single string.
  140. """
  141. text = ''
  142. temp = b''
  143. for t in tokens:
  144. if isinstance(t, str):
  145. if temp:
  146. text += temp.decode('utf-8', errors=self.errors)
  147. temp = b''
  148. text += t
  149. elif isinstance(t, bytes):
  150. temp += t
  151. else:
  152. raise TypeError('token should only be of type types or str')
  153. if temp:
  154. text += temp.decode('utf-8', errors=self.errors)
  155. return text
  156. @property
  157. def vocab_size(self):
  158. return self.tokenizer.n_vocab
  159. def _decode(
  160. self,
  161. token_ids: Union[int, List[int]],
  162. skip_special_tokens: bool = False,
  163. errors: str = None,
  164. ) -> str:
  165. if isinstance(token_ids, int):
  166. token_ids = [token_ids]
  167. if skip_special_tokens:
  168. token_ids = [i for i in token_ids if i < self.eod_id]
  169. return self.tokenizer.decode(token_ids, errors=errors or self.errors)
  170. def encode(self, text: str) -> List[int]:
  171. return self.convert_tokens_to_ids(self.tokenize(text))
  172. def count_tokens(self, text: str) -> int:
  173. return len(self.tokenize(text))
  174. def truncate(self, text: str, max_token: int, start_token: int = 0) -> str:
  175. token_list = self.tokenize(text)
  176. token_list = token_list[start_token:min(len(token_list), start_token + max_token)]
  177. return self.convert_tokens_to_string(token_list)
  178. tokenizer = QWenTokenizer(Path(__file__).resolve().parent / 'qwen.tiktoken')
  179. def count_tokens(text: str) -> int:
  180. return tokenizer.count_tokens(text)